Treatment
Time-EAPCR: A Deep Learning-Based Novel Approach for Anomaly Detection Applied to the Environmental Field
Liu, Lei, Lu, Yuchao, An, Ling, Liang, Huajie, Zhou, Chichun, Zhang, Zhenyu
As human activities intensify, environmental systems such as aquatic ecosystems and water treatment systems face increasingly complex pressures, impacting ecological balance, public health, and sustainable development, making intelligent anomaly monitoring essential. However, traditional monitoring methods suffer from delayed responses, insufficient data processing capabilities, and weak generalisation, making them unsuitable for complex environmental monitoring needs.In recent years, machine learning has been widely applied to anomaly detection, but the multi-dimensional features and spatiotemporal dynamics of environmental ecological data, especially the long-term dependencies and strong variability in the time dimension, limit the effectiveness of traditional methods.Deep learning, with its ability to automatically learn features, captures complex nonlinear relationships, improving detection performance. However, its application in environmental monitoring is still in its early stages and requires further exploration.This paper introduces a new deep learning method, Time-EAPCR (Time-Embedding-Attention-Permutated CNN-Residual), and applies it to environmental science. The method uncovers feature correlations, captures temporal evolution patterns, and enables precise anomaly detection in environmental systems.We validated Time-EAPCR's high accuracy and robustness across four publicly available environmental datasets. Experimental results show that the method efficiently handles multi-source data, improves detection accuracy, and excels across various scenarios with strong adaptability and generalisation. Additionally, a real-world river monitoring dataset confirmed the feasibility of its deployment, providing reliable technical support for environmental monitoring.
Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks
We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures. Applied to materials design problems, we present compositional reasoning experiments by extracting node-specific and synergy-level principles to foster genuinely novel knowledge synthesis, yielding cross-domain ideas that transcend rote summarization and strengthen the framework's potential for open-ended scientific discovery. We discuss other applications in scientific discovery and outline future directions for enhancing scalability and interpretability.
Cracking the Code: Enhancing Development finance understanding with artificial intelligence
Analyzing development projects is crucial for understanding donors aid strategies, recipients priorities, and to assess development finance capacity to adress development issues by on-the-ground actions. In this area, the Organisation for Economic Co-operation and Developments (OECD) Creditor Reporting System (CRS) dataset is a reference data source. This dataset provides a vast collection of project narratives from various sectors (approximately 5 million projects). While the OECD CRS provides a rich source of information on development strategies, it falls short in informing project purposes due to its reporting process based on donors self-declared main objectives and pre-defined industrial sectors. This research employs a novel approach that combines Machine Learning (ML) techniques, specifically Natural Language Processing (NLP), an innovative Python topic modeling technique called BERTopic, to categorise (cluster) and label development projects based on their narrative descriptions. By revealing existing yet hidden topics of development finance, this application of artificial intelligence enables a better understanding of donor priorities and overall development funding and provides methods to analyse public and private projects narratives.
Application of Artificial Intelligence (AI) in Civil Engineering
Awolusi, Temitope Funmilayo, Finbarrs-Ezema, Bernard Chukwuemeka, Chukwudulue, Isaac Munachimdinamma, Azab, Marc
Hard computing generally deals with precise data, which provides ideal solutions to problems. However, in the civil engineering field, amongst other disciplines, that is not always the case as real-world systems are continuously changing. Here lies the need to explore soft computing methods and artificial intelligence to solve civil engineering shortcomings. The integration of advanced computational models, including Artificial Neural Networks (ANNs), Fuzzy Logic, Genetic Algorithms (GAs), and Probabilistic Reasoning, has revolutionized the domain of civil engineering. These models have significantly advanced diverse sub-fields by offering innovative solutions and improved analysis capabilities. Sub-fields such as: slope stability analysis, bearing capacity, water quality and treatment, transportation systems, air quality, structural materials, etc. ANNs predict non-linearities and provide accurate estimates. Fuzzy logic uses an efficient decision-making process to provide a more precise assessment of systems. Lastly, while GAs optimizes models (based on evolutionary processes) for better outcomes, probabilistic reasoning lowers their statistical uncertainties.
Machine learning in wastewater treatment: insights from modelling a pilot denitrification reactor
Bøhn, Eivind, Eidnes, Sølve, Jonassen, Kjell Rune
Wastewater treatment plants are increasingly recognized as promising candidates for machine learning applications, due to their societal importance and high availability of data. However, their varied designs, operational conditions, and influent characteristics hinder straightforward automation. In this study, we use data from a pilot reactor at the Veas treatment facility in Norway to explore how machine learning can be used to optimize biological nitrate ($\mathrm{NO_3^-}$) reduction to molecular nitrogen ($\mathrm{N_2}$) in the biogeochemical process known as \textit{denitrification}. Rather than focusing solely on predictive accuracy, our approach prioritizes understanding the foundational requirements for effective data-driven modelling of wastewater treatment. Specifically, we aim to identify which process parameters are most critical, the necessary data quantity and quality, how to structure data effectively, and what properties are required by the models. We find that nonlinear models perform best on the training and validation data sets, indicating nonlinear relationships to be learned, but linear models transfer better to the unseen test data, which comes later in time. The variable measuring the water temperature has a particularly detrimental effect on the models, owing to a significant change in distributions between training and test data. We therefore conclude that multiple years of data is necessary to learn robust machine learning models. By addressing foundational elements, particularly in the context of the climatic variability faced by northern regions, this work lays the groundwork for a more structured and tailored approach to machine learning for wastewater treatment. We share publicly both the data and code used to produce the results in the paper.
Application of Soft Actor-Critic Algorithms in Optimizing Wastewater Treatment with Time Delays Integration
Mohammadi, Esmaeel, Ortiz-Arroyo, Daniel, Hansen, Aviaja Anna, Stokholm-Bjerregaard, Mikkel, Gros, Sebastien, Anand, Akhil S, Durdevic, Petar
Wastewater treatment plants face unique challenges for process control due to their complex dynamics, slow time constants, and stochastic delays in observations and actions. These characteristics make conventional control methods, such as Proportional-Integral-Derivative controllers, suboptimal for achieving efficient phosphorus removal, a critical component of wastewater treatment to ensure environmental sustainability. This study addresses these challenges using a novel deep reinforcement learning approach based on the Soft Actor-Critic algorithm, integrated with a custom simulator designed to model the delayed feedback inherent in wastewater treatment plants. The simulator incorporates Long Short-Term Memory networks for accurate multi-step state predictions, enabling realistic training scenarios. To account for the stochastic nature of delays, agents were trained under three delay scenarios: no delay, constant delay, and random delay. The results demonstrate that incorporating random delays into the reinforcement learning framework significantly improves phosphorus removal efficiency while reducing operational costs. Specifically, the delay-aware agent achieved 36% reduction in phosphorus emissions, 55% higher reward, 77% lower target deviation from the regulatory limit, and 9% lower total costs than traditional control methods in the simulated environment. These findings underscore the potential of reinforcement learning to overcome the limitations of conventional control strategies in wastewater treatment, providing an adaptive and cost-effective solution for phosphorus removal.
Time-Series Forecasting in Smart Manufacturing Systems: An Experimental Evaluation of the State-of-the-art Algorithms
Farahani, Mojtaba A., Kalach, Fadi El, Harper, Austin, McCormick, M. R., Harik, Ramy, Wuest, Thorsten
TSF is growing in various domains including manufacturing. Although numerous TSF algorithms have been developed recently, the validation and evaluation of algorithms hold substantial value for researchers and practitioners and are missing. This study aims to fill this gap by evaluating the SoTA TSF algorithms on thirteen manufacturing datasets, focusing on their applicability in manufacturing. Each algorithm was selected based on its TSF category to ensure a representative set of algorithms. The evaluation includes different scenarios to evaluate the models using two problem categories and two forecasting horizons. To evaluate the performance, the WAPE was calculated, and additional post hoc analyses were conducted to assess the significance of observed differences. Only algorithms with codes from open-source libraries were utilized, and no hyperparameter tuning was done. This allowed us to evaluate the algorithms as "out-of-the-box" solutions that can be easily implemented, ensuring their usability within the manufacturing by practitioners with limited technical knowledge. This aligns to facilitate the adoption of these techniques in smart manufacturing systems. Based on the results, transformer and MLP-based architectures demonstrated the best performance with MLP-based architecture winning the most scenarios. For univariate TSF, PatchTST emerged as the most robust, particularly for long-term horizons, while for multivariate problems, MLP-based architectures like N-HITS and TiDE showed superior results. The study revealed that simpler algorithms like XGBoost could outperform complex algorithms in certain tasks. These findings challenge the assumption that more sophisticated models produce better results. Additionally, the research highlighted the importance of computational resource considerations, showing variations in runtime and memory usage across different algorithms.
Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection
Multivariate time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc. Excellent anomaly detection models can greatly improve work efficiency and avoid major economic losses. However, with the development of technology, the increasing size and complexity of data, and the lack of labels for relevant abnormal data, it is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets. In this paper, we propose a hypergraph based spatiotemporal graph convolutional neural network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables through a hypergraph based dynamic graph structure learning module. On this basis, we further use the hypergraph based spatiotemporal graph convolutional network to utilize the learned hypergraph structure to effectively propagate and aggregate one-hop and multi-hop related node information in the convolutional network, thereby obtaining rich spatial information. Furthermore, through the multi-scale TCN dilated convolution module, the STGCN_hyper model can also capture the dependencies of features at different scales in the temporal dimension. An unsupervised anomaly detector based on PCA and GMM is also integrated into the STGCN_hyper model. Through the anomaly score of the detector, the model can detect the anomalies in an unsupervised way. Experimental results on multiple time series datasets show that our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection tasks. Our code is available on: https://git.ecdf.ed.ac.uk/msc-23-24/s2044819
Water quality polluted by total suspended solids classified within an Artificial Neural Network approach
Soto, I. Luviano, Sánchez, Y. Concha, Raya, A.
This study investigates the application of an artificial neural network framework for analysing water pollution caused by solids. Water pollution by suspended solids poses significant environmental and health risks. Traditional methods for assessing and predicting pollution levels are often time-consuming and resource-intensive. To address these challenges, we developed a model that leverages a comprehensive dataset of water quality from total suspended solids. A convolutional neural network was trained under a transfer learning approach using data corresponding to different total suspended solids concentrations, with the goal of accurately predicting low, medium and high pollution levels based on various input variables. Our model demonstrated high predictive accuracy, outperforming conventional statistical methods in terms of both speed and reliability. The results suggest that the artificial neural network framework can serve as an effective tool for real-time monitoring and management of water pollution, facilitating proactive decision-making and policy formulation. This approach not only enhances our understanding of pollution dynamics but also underscores the potential of machine learning techniques in environmental science.
LEMMA-RCA: A Large Multi-modal Multi-domain Dataset for Root Cause Analysis
Zheng, Lecheng, Chen, Zhengzhang, Wang, Dongjie, Deng, Chengyuan, Matsuoka, Reon, Chen, Haifeng
Root cause analysis (RCA) is crucial for enhancing the reliability and performance of complex systems. However, progress in this field has been hindered by the lack of large-scale, open-source datasets tailored for RCA. To bridge this gap, we introduce LEMMA-RCA, a large dataset designed for diverse RCA tasks across multiple domains and modalities. LEMMA-RCA features various real-world fault scenarios from IT and OT operation systems, encompassing microservices, water distribution, and water treatment systems, with hundreds of system entities involved. We evaluate the quality of LEMMA-RCA by testing the performance of eight baseline methods on this dataset under various settings, including offline and online modes as well as single and multiple modalities. Our experimental results demonstrate the high quality of LEMMA-RCA. The dataset is publicly available at https://lemma-rca.github.io/.